منابع مشابه
Plane Maximal Curves
We are interested in non-singular plane curves whose number of rational points attains the Hasse-Weil upper bound. Dedicated with affection to J.W.P. Hirschfeld and G. Korchmáros
متن کاملA note on superspecial and maximal curves
In this note we review a simple criterion, due to Ekedahl, for superspecial curves defined over finite fields.Using this we generalize and give some simple proofs for some well-known superspecial curves.
متن کاملa note on superspecial and maximal curves
in this note we review a simple criterion, due to ekedahl, for superspecial curves defined over finite fields.using this we generalize and give some simple proofs for some well-known superspecial curves.
متن کاملReal Plane Algebraic Curves
We study real algebraic plane curves, at an elementary level, using as little algebra as possible. Both cases, affine and projective, are addressed. A real curve is infinite, finite or empty according to the fact that a minimal polynomial for the curve is indefinite, semi–definite nondefinite or definite. We present a discussion about isolated points. By means of the operator, these points can ...
متن کاملOn submaximal plane curves
We prove that a submaximal curve in P has sequence of multiplicities (μ, ν, . . . , ν), with μ < sν for every integer s with (s− 1)(s+ 2) ≥ 6.76( r − 1). This note is a sequel to [10], where a specialization method was developed in order to bound the degree of singular plane curves. The problem under consideration is, given a system of multiplicities (m) = (m1,m2, . . . ,mr) ∈ Z and points p1, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2001
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa98-2-7